

Génie Electrique et Electronique Master program Prof. Elison Matioli

EE-557 Semiconductor devices I

Doping and carrier concentration

Outline of the lecture

- 1. Carrier concentration
- 2. Doping
- 3. Determining Fermi level

Read Chapter 2 of the reference book

References:

- J. A. del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/)
- C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, 2005

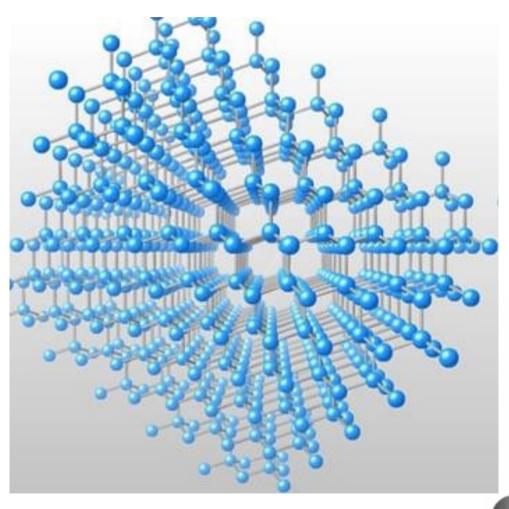
Announcements

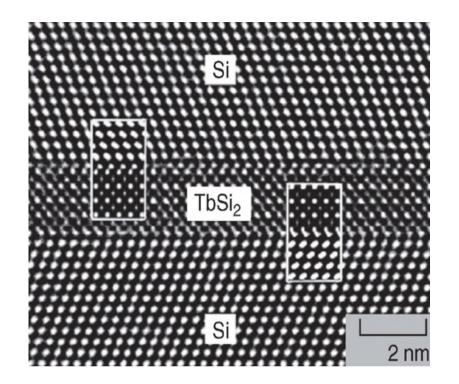
Exercise list 1 is online! Please try to solve it... next week we will solve it in class

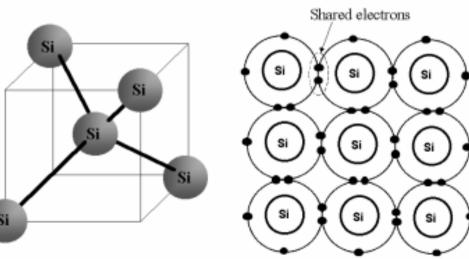
This Friday there is a GREAT seminar about the **history of light emitters**:

IEM Distinguished Lecturers Seminar: The Search for Efficient Visible Light Emitters: Past, Present, Future

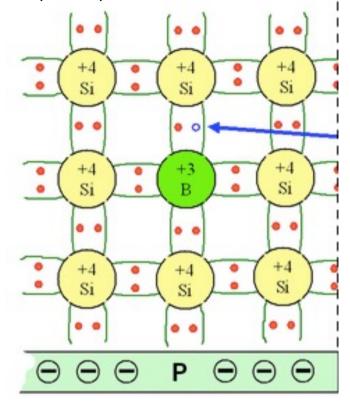
Event details						
06.10.2023						
13:15 > 14:00						
Prof. Claude Weisbuch Materials Department, University of California, USA & Laboratoire de Physique de la Matière Condensée, École Polytechnique, CNRS, Institut Polytechnique de Paris, France						
⊚ ELA 2 □ Online						
Conferences - Seminars						
English						


Key questions

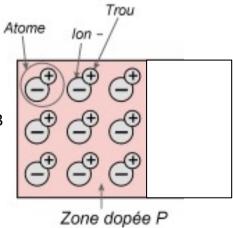


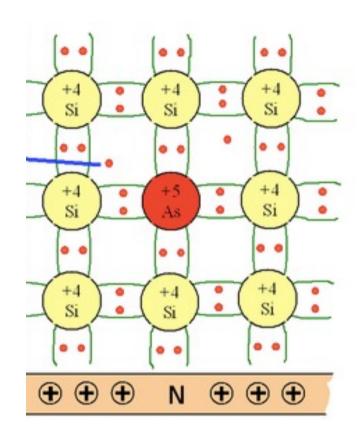

- What is doping?
- Where is the Fermi level in a doped semiconductor?

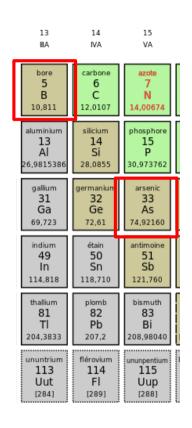
Intrinsic Silicon $\rho = 3.2x10^3 \,\Omega m$

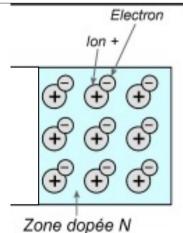


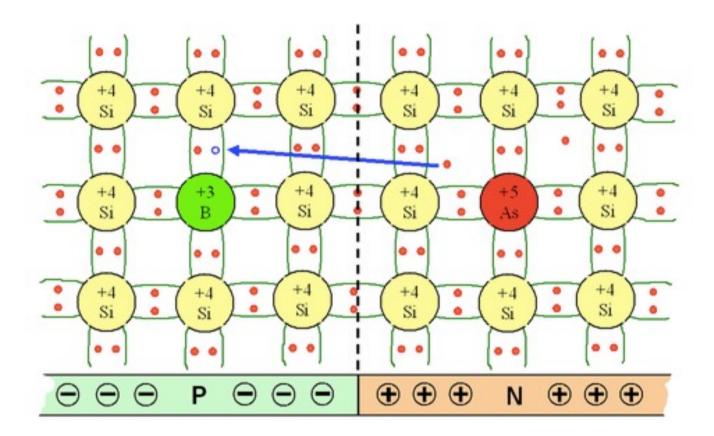
P-type doping with acceptors (Boron)


Silicon p-type:


13	14	15		
IIA	IVA	VA		
bore	carbone	azote		
5	6	7		
B	C	N		
10,811	12,0107	14,00674		
aluminium	silicium	phosphore		
13	14	15		
Al	Si	P		
26,9815386	28,0855	30,973762		
gallium	germanium	arsenic		
31	32	33		
Ga	Ge	As		
69,723	72,61	74,92160		
indium	étain	antimoine		
49	50	51		
In	Sn	Sb		
114,818	118,710	121,760		
thallium	plomb	bismuth		
81	82	83		
TI	Pb	Bi		
204,3833	207,2	208,98040		
ununtrium	flérovium	ununpentium 1		
113	114	115		
Uut	Fl	Uup		
[284]	[289]	[288]		

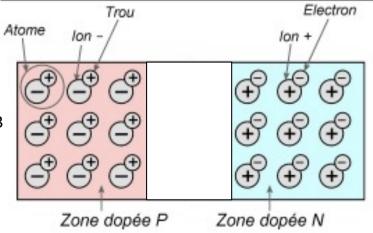

Silicon p-type:


Concentration B = 10^{18} cm⁻³ ρ = 0.04 Ω cm = $4x10^{-4}$ Ω m



Silicon n-type:

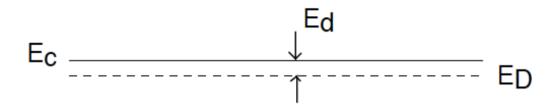
Concentration As = 10^{18} cm⁻³ $\rho = 0.02 \Omega \text{cm} = 2x10^{-4} \Omega \text{m}$



13	14	15		
IIA	IVA	VA		
bore	carbone	azote		
5	6	7		
B	C	N		
10,811	12,0107	14,00674		
aluminium	silicium	phosphore		
13	14	15		
Al	Si	P		
26,9815386	28,0855	30,973762		
gallium	germaniun	arsenic		
31	32	33		
Ga	Ge	As		
69,723	72,61	74,92160		
indium	étain	antimoine		
49	50	51		
In	Sn	Sb		
114,818	118,710	121,760		
thallium	plomb	bismuth		
81	82	83		
TI	Pb	Bi		
204,3833	207,2	208,98040		
ununtrium	flérovium	ununpentium		
113	114	115		
Uut	Fl	Uup		
[284]	[289]	[288]		

Silicon p-type:

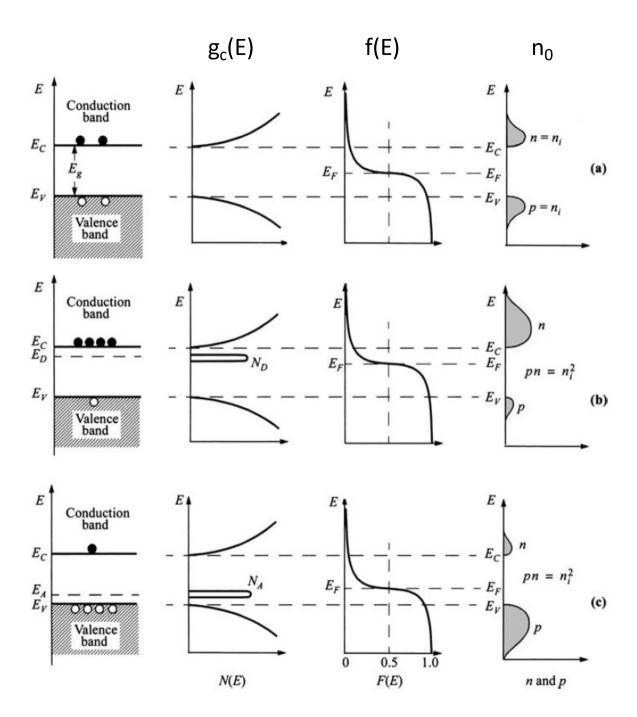
Concentration B = 10^{18} cm⁻³ ρ = 0.04Ω cm = $4x10^{-4} \Omega$ m


Silicon n-type:

Concentration As = 10^{18} cm⁻³ ρ = 0.02Ω cm = $2x10^{-4} \Omega$ m

Carrier concentration

Representation of donor and acceptor states in energy band diagram:


 $E_D, E_A \sim\!\!40$ –60 meV , for common dopants

Near room temperature, most dopants are ionized:

$$N_D^+ \simeq N_D$$
 $N_A^- \simeq N_A$

Carrier concentration

Ionization energies

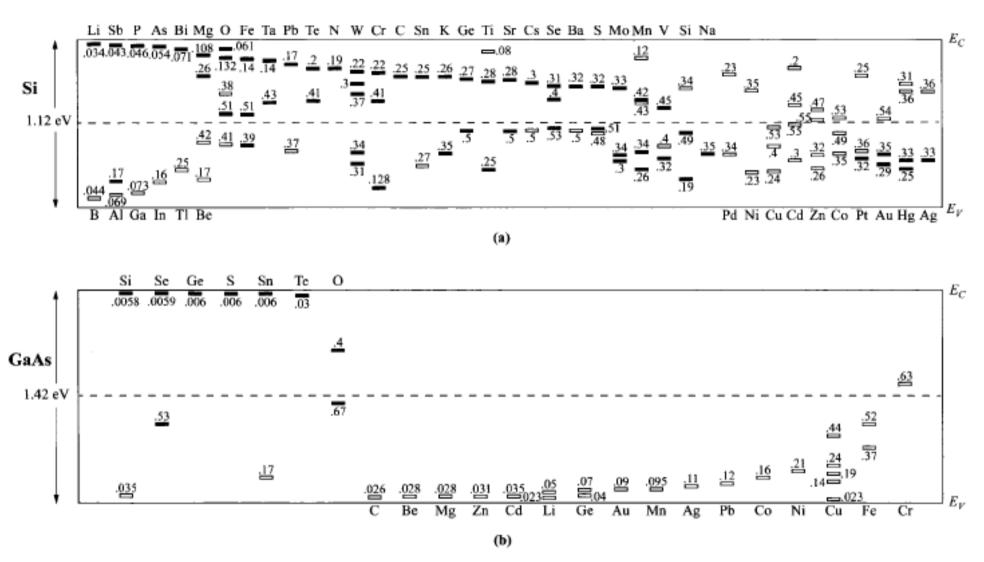
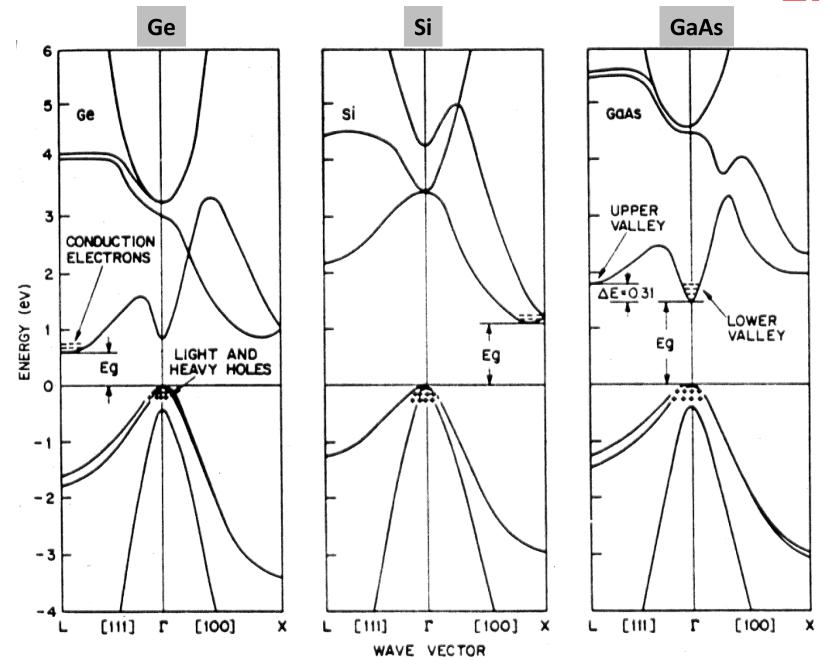
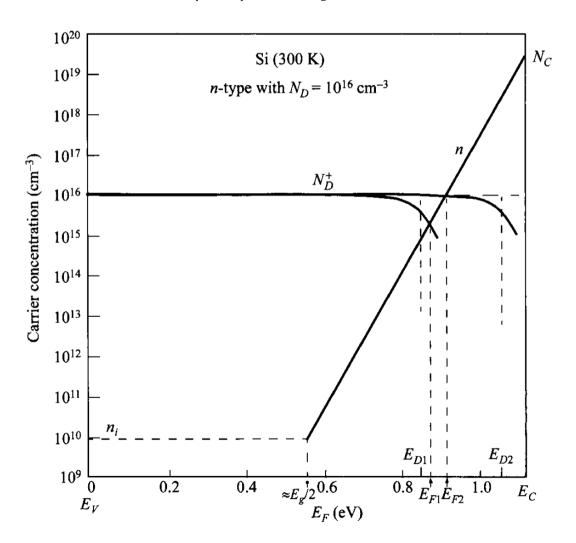



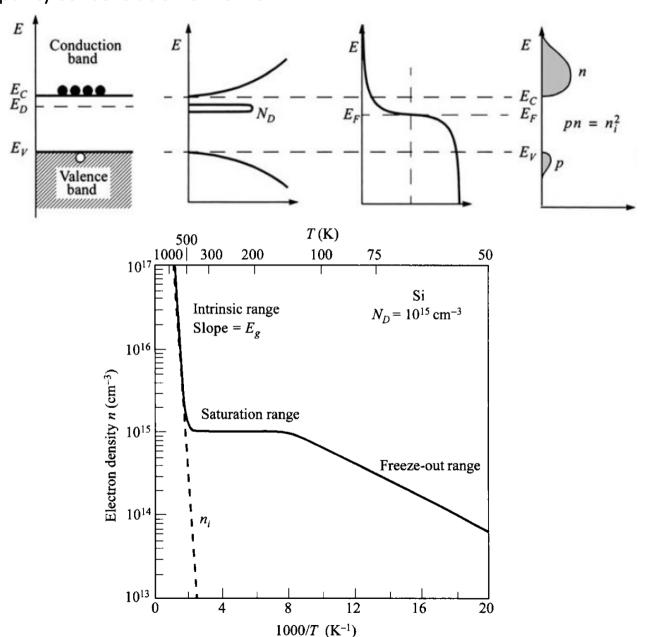
Fig. 10 Measured ionization energies for varies impurities in (a) Si and (b) GaAs. Levels below the gap center are measured from E_{ν} Levels above the gap center are measured from E_{C} . Solid bars represent donor levels and hollow boxes represent acceptor levels. (After Refs. 29, 31, 34, and 35.)

Reminder: valence bands are often degenerated at K = 0 ($g_A = 2x2$)


Ionization energies

Graphical method:

Determine the Fermi energy level E_F and electron concentration n, when ionization is not complete.


Examples with two different values of impurity levels E_D are shown below:

Ionization energies

Electron density as a function of temperature for a Si sample with donor impurity concentration of 10¹⁵ cm⁻³

Key conclusions

Distinct feature of semiconductors: at 0 K, quantum state filling ends up with full band separated from next empty band by ~1-3eV bandgap at around 300 K, some electrons populate next band above bandgap.

System in thermal equilibrium:

- isolated from outside world and in steady state.
- In thermal equilibrium, E_F is independent of position: it is constant!

Occupation probability of quantum systems in thermal equilibrium governed by Fermi-Dirac distribution function:

$$f(E) = \frac{1}{1 + \exp\frac{E - E_F}{kT}}$$

Density of states give us the number of states per volume available at a give energy

In 3D:
$$g_c(E) = 4\pi \left(\frac{2m_{de}^*}{h^2}\right)^{3/2} \sqrt{E - E_c} \qquad E \ge E_c$$

$$g_v(E) = 4\pi \left(\frac{2m_{dh}^*}{h^2}\right)^{3/2} \sqrt{E_v - E}$$
 $E \le E_v$

Key conclusions

Non-degenerate semiconductor:

$$n_o = N_c \exp \frac{E_F - E_c}{kT}, \qquad p_o = N_v \exp \frac{E_v - E_F}{kT}$$

Intrinsic semiconductor: ideally pure semiconductor.

$$n_o = p_o = n_i = \sqrt{N_c N_v} \exp{-\frac{E_g}{2kT}}$$

In non-degenerate semiconductor $n_o p_o$ $n_o p_o = n_i^2$

In intrinsic semiconductor, E_F is close to middle of E_g .

In extrinsic semiconductor, E_{ε} location depends on doping level:

n-type non-degenerate semiconductor:

$$n_o \simeq N_D, \qquad E_F - E_c \simeq kT \ln \frac{N_D}{N_c}$$

p-type non-degenerate semiconductor:

$$p_o \simeq N_A, \qquad E_F - E_v \simeq kT \ln \frac{N_v}{N_A}$$